[动态规划]---part2

慈云数据 1年前 (2024-03-19) 技术支持 89 0

前言

作者:小蜗牛向前冲

专栏:小蜗牛算法之路

 专栏介绍:"蜗牛之道,攀登大厂高峰,让我们携手学习算法。在这个专栏中,将涵盖动态规划、贪心算法、回溯等高阶技巧,不定期为你奉上基础数据结构的精彩算法之旅。一同努力,追逐技术的星辰大海。"

 

目录

一、不同路径II(medium)

a、解题思路 

b、代码

二、礼物的最⼤价值(medium)

a、解题思路 

b、代码

三、 下降路径最⼩和(medium)

a、解题思路 

b、代码

四、 最⼩路径和(medium)

a、解题思路 

b、代码

五、地下城游戏(hard) 

a、解题思路 

b、代码


本期:继续手撕动态规划:不同路径II(medium),礼物的最⼤价值(medium),下降路径最⼩和(medium),最⼩路径和(medium),地下城游戏(hard)

继续刷动态规划相关算法题,如果不清楚什么是动态规划的可以看这里:[动态规划]---part1

一、不同路径II(medium)

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish”)。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

网格中的障碍物和空位置分别用 1 和 0 来表示。

示例 1:

输入:obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
输出:2
解释:3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2 条不同的路径:
1. 向右 -> 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右 -> 向右

示例 2:

输入:obstacleGrid = [[0,1],[0,0]]
输出:1

提示:

  • m == obstacleGrid.length
  • n == obstacleGrid[i].length
  • 1 映射dp[3][4];

    也就是横着纵坐标都要加1

    4、 填表顺序

    从上往下填写每一行,每一行都是从左往又开始填写 

    5、返回

    dp[m][n]

    b、代码

    class Solution {
    public:
        int uniquePathsWithObstacles(vector& obstacleGrid)
        {
            int m = obstacleGrid.size();//有多少行
            int n = obstacleGrid[0].size();//有多少列
            //创建dp表
            vector dp(m + 1, vector(n + 1));
            //初始化
            dp[1][0] = 1;
            //填表
            for (int i = 1; i 
微信扫一扫加客服

微信扫一扫加客服